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THE PENETRATION OF A JET INTO A CHANNEL

F. 5. Vladimirov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol.

The method of S. A. Chaplygin [1], as generalized by S. V. Fal’ko-
vich [2] to the case of a few characteristic velocities, is used to solve
the two-dimensional problem of the penetration of a subsonic jet of
compressible fluid flowing at an angle from a slit into a stream of the
same fluid bounded by parallel walls. The problem is solved for the
case of an incompressibie fluid by passing to the asymptotic limit.
Using the tables of (3] the compression coefficient is calculated for a
stream of gas merged with an incompressible fluid.

§ 1. Let a two-dimensional, steady-state, adiabatic
stream of gas with a density py and a subsonic velocity
vy move from left to right along a channel with parallel
walls MON and ABCE (Fig. 1) and pass to infinity.
This will be referred to as the main stream. A jet of
the same gas flows out of a flat slit of width h with
rectilinear parallel walls GB and FC, set at an angleA
to the channel wall ABCE. This gas has a density p;
and subsonic velocity v; deep within the slit. It is as~
sumed that after these streams meet, the gas jet breaks
away from the channel wall at the point C and pene-
trates into the main stream, forming a discontinuity
surface CD, which separates the combined stream
from the space filled with gas which is at rest. We
shall confine ourselves to the case when the boundary
between the leading edge of the jet BK and the main
stream is not a discontinuity line, but a stream line,
common to the flows and having a continuous change of
velocity along the boundary.

Let p; and vy be the gas density and velocity, re-
spectively, at the surface of the jet CD, and 6 be the
width of the combined stream at infinity to the right.
The coordinate origin is situated on the channel wall
MON, and the x axis is in the direction of the flow,
while the y axis passes through the point B. The coor-
dinates of the point C will be denoted by B and H + d,
with d 2 0 (the case with d > 0 is given in Fig. 1). The
slit width is then h =bsinA + dcos A.

Fig. 1

We shall assume that on the streamline MON the
stream function 3 = 0. If the gas flow rates at cross
sections AM and FG are denoted by Q,; and Q,, respec-
tively, and the gas flow rate at the cross section DNis
denoted by Q,

¢ = Q,+ @y, (1.1)

then the stream function ¥ = Q, along the streamlines
AB and GBK, which meet at the point B, and ¢ = Q on
the stream line FCD.
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In the hodograph velocity plane 76 (with polar coor-
dinates 7 = vz/vlznax, where v is the velocity, vy, is
the maximum velocity, and 0 is the angle of inclination
of the velocity to the x axis) the flow region under con-
sideration is a circular sector of radius 73 and aper-
ture angle A (Fig. 2).

A M@=0 ¥

8 =42

Fig. 2

The boundary conditions are
Y= 0

P=@Q, for =0, 0<t<"2,

P=0 for 6=—2 ti<T< s
Pp=0 for 0=0, . <7<,

foro=—a 0<r<n,

(1.2)
Y= 0@ for —A<6<0, 1=15. (1.3

Thus the solution of the present problem has been
reduced to finding the solution of the internal Dirichlet
problem for the Chaplygin equation

b —) S 4 hed + B— Tl GE+

+— @+ 17 S =0,
B=1/(x—1),

in the appropriate regions of the circular sector.
Following Fal'kovich [2], we shall look for a solu-
tion of the problem in the form

n=cpfCy (1.4}

1= Q2+ X anta(v)sin2ef (o=3T),  (1.5)
n=1

2)

Vo= Qa— Qi+ 3 [Anto (1) + Bullo (9] sin 200, (1.6)
n=1

‘il)a = Q _g— + Z [anm (T;) + Dncrn (T)] sin 2(06 (1.7)
n=s1

Here the y subscript corresponds to the number of that
region of the circular sector for which we are seekinga
solution; z w(’l’) is the solution of the equation
v?(l—1z "+ +B8—1)7]2. —
— 01— (2B +1)7]2,=0 (1.8)

which is bounded at 7 = 0; £ ,(7) is Cherry's function
[4], a second linearly independent solution of Eq. (1.8},
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treated by Fal'kovich [2]. It is significant that the
Wronskian of these integrals is

2, (V) & (T)

WO=|; 0 o

(1.9)

=2 (1—1)p.

The coefficients @y, Ay, Cp, and Dy are to be deter-
mined.

The stream function specified by Egs. (1.5)—(1.7),
satisfies the boundary conditions (1.2). We now re-
quire that the boundary condition (1.3) be satisfied,
and also that ¥4 should be the analytic continuation of
¥4 from region (1) to region (2), and that 3 should be
the analytic continuation of ¥, from region (2) to region
(3), i-e., we require that for —A < g< 0 the following
equations should hold:

s (Vs, 8) = @, 1 (71, 8) = Pa (71, 6),
(11, 0) __ da(m, e)
ot at
(1 0 = Yol 0, e 20D (110)

Setting ¥, ¥y, ¥3 in(1.10) inaccordance with (1.5)~
(1.7) and equating the coefficients of sin 2w6 we ob-
tain the following system of equations for determining
the coefficients:

CaZo (Ta) -+ Dl (Ts) = —2Q /
(Cn— Ap) 20 (12) + (Dn— Bu) Bo (Vo) = — 2@/t ,
(An— an) 2o (1) + Bulo (1) = — (—1)"2Q1 /0,
(An— as) 2o" (1) + Bala’ (1) = 0,
(Cn— Ap) 2o’ (t2) + (Dn— Br) &' (v2)=0 .

Solving the system of equations (1.11) and using the

relation (1.9), we find the coefficients ay, Ay, By, Cp, and
Dy. The stream function ¥ is found at the same time.
In what follows we shall need only the function # in the
region T3 < 7 < T3, i.e., P3, which we shall denote sim-
ply by $. Inserting the coefficients C,, and Dy, in (1.7),
we have

(1.11)

$= _g.[ 0+ 2 fo (%) S"‘?‘“"’] (1.12)
Zy (T) |: GaTa zm’ (Tﬂ)
fw (T) z (13) + ( —Tz)B zm (173)
_q\n G171 z m(Tl)]
+{(—1) TR A To(x, 13),
T. (%, Ts) = 20 (%) Lo (Ts) — §u (7) 24 (T3),
=01/0Q, 02=20:/Q. (1.13)
We note that in what follows,
T(nl (rir 1'3) = [T“’I (t' 1:3)]1‘=Ti' (i = 11 2: 3) s
T (u,uw)=w (n) Tolm, 1) =0, fo(ts)=—1,
, _ (Ta) T (1 — 13 B L (Tz)
fo' (W) = — o5 Z,, (%) + G Ts (1-—1:2) 2, (Ty)
no T/l —1\P % (1)
+ (e () (1.14)

§ 2. We shall determine the compression coefficient
of the combined stream. Along the streamline the fol -

lowing general formula holds:

(1—1)

= 2% sm9 (2.1)

60

Inserting the stream function % from (1.12) into (2.1),
and setting T = 73, we integrate from —A to 6 Keep-
ing in mind that y = H + d for 6 = —A, we obtain the y
ordinate along the jet CD,

y = _Q_ T3 (1 — ) 5{21‘ w (T3) [sin(2m-—i)0 _

Vg 20 —1
ENCESIA
T T 2041
—asind N (e L H a2

n=al

Remembering that the flow rate is Q = 6v3(1 — 7‘3)3
and that the condition 6 = 0, y =0 holds at infinity,
then (2.2) may be easily transformed into the form

= (H+ d)[1 2 sth( ) o fo ]1. (2.3)

The compression coefficient of the combined stream
k will be taken to mean the ratio of the least width 6 of
the stream to the width h + H of the slit and the chan-
nel. We then have directly from (2.3)

1 _h & o fo (%)
t=2tE [1+£-31nx2( —1) 42_31]

[
(k= 557)- (2.4)
In addition to formulas (2.3) and (2.4) we require
the equation of continuity (1.1), which may be written
in the form

Q=hv,(1 — )P+ Hos (1 — v)f=

= 8, (1 — To)f. (2.5)

Relations (2.3), (2.4), and (2.5) determine the
stream velocity v, its width §, and also the compres-
sion coefficient k in the functions vy, vy, h, H. In the
particular case when A = 7/2, d =0 and w = u we have
for the stream compression coefficient

1 _ h+ H 8173 (—1)“ Zn (13)
=7 U7 [z" WET T, (v

ol (i=m ) ()" (1)
20 \1— 1y 2 -1 z ()

o (izmy Z4nz_1i'f:§))]}

(2.6)

when (1.14) is taken into account.
If the jet flows out of an orifice from an infinitely
wide vessel, then 74 = 0. For 79 =0, H— «, and for-
mula (2.6) passes to the well-known formula of Chaply-
gin [1]
4yt S (=) ) (%)

F T A1 5 0m

0

(2.7)
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Table 1
T3 k) Ty hH k 3 Ta T hiH k
0.04 0.02 0.02 0.0535 | 0.7274 0.08 | 0.02 | 0.0223 | 0.8600
0.12 0.08 | 0.04 | 0.0146 | 0.8655
0.02 0.02 0.1447 | 0.6119 . 0.08 | 0.06 | 0.0111 | 0.8675
0-06 0.04 0.02 0.0240 | 0.8355 0.08 | 0.08 | 0.0089 | 0.8686
0.04 0.04 0.0140 | 0.8409
0.02 | 0.02 | 0.4664 | 0.4535
0.02 0.02 0.2366 | 0.5459 0.04 | 0.02 7 0.2285 | 0.5902
0.04 0.02 0.1642 | 0.7214 0.04 | 0.04 | 0.1448 | 0.6233
0.08 0.04 0.04 0.1022 | 0.7502 0.08 1 0.02 | 0.0400 | 0.8163
N 0.06 0.02 0.0128 | 0.8877 0.08 | 0.04 | 0.0265 | 0.8255
0.06 0.04 0.0079 | 0.8910 0.14 0.08 | 6.06 | 0.0204 | 0.8290
0.06 0.06 0.0056 | 0.8920 : 0.08 | 0.08 | 0.0167 | 0.8308
0.10 | 0.02 | 0.0132 | 0.8941
0.02 0.02 0.3208 | 0.5040 0.40 | 0.04 | 0.0087 ;| 0.8922
0.04 0.02 0.1247 | 0.6722 0.40 { 0,06 | 0.0067 | 0.8939
010 0.04 0.04 0.0782 | 0.6926 0.10 | 0,08 | 0.0055 | 0.8950
0.06 0.02 0.0391 0.8145 0.10 { 0.10 | 0.0047 | 0.8999
0.06 0.04 0.0247 | 0.8204
0.06 0.06 0.0486 | 0.8235 0.02 { 0.02 | 0.5470 | 0.4347
0.04 | 0.02 | 0.2761 | 0.5625
0.02 0.02 0.3975 | 0.4744 0.04 | 0.04 | 0.1834 | 0.5977
0.04 0.02 0.1718 | 0.6257 1/6 0.06 | 0.02; 0.1357 | 0.6762
0.19 0.04 0.04 0.1126 | 0.6518 / " 0.06 { 0.04 | 0.0908 | 0.6997
" 0.06 0.02 0.0689 | 0.7556 0.06 | 0,06 | 0.0708 | 0.7090
0.06 0.04 0.0451 | 0.7697 0.08 | 0.02 | 0.0626 | 0.7719
0.06 0.06 0.0342 | 0.7750 0.08 1 0.04 | 0.0419 | 0.7851
0.08 | 0.06 | 0.0326 | 0.7903
0.08 | 0.08 | 0.0271 | 0.7930
Table 2
TafTs i/t h/H k T3/Ts /T3 hiH k
0.50 0.50 0.0626 0.7074 0.5000 | 0.3333 | 0.0854 | 0.6968
0.6667 | 0.1667 | 0.0522 | 0.7963
0.3333 0.3333 0.1500 0.5773 0.6667 | 0.3333 | 0.0335 | 0.8088
0.6667 0.3333 0.0324 0.8088 0.6667 | 0.5000 | 0.0246 | 0.8140
0. 6667 0.6667 0.0184 0.8166 0.1428 | 0.1428 | 0.6368 | 0.3779
0.2857 | 0.1428 | 0.3628 | 0.4929
0.2500 0.2500 0.2973 0.5000 0.2857 | 0.2857 | 0.2361 | 0.5346
0.5000 0.25006 0.1035 0.6877 0.5714 | 0.4428 ; 0.1013 | 0.7211
0.7500 0.2500 0.0216 0.8584 0.5714 | 0.2857 | 0.0659 | 0.7321
0.7500 0.5000 0.0130 0.8641 0.5714 | 0.4286 | 0.0494 | 0.7510
0.7500 0.7500 0.0086 0.8662 0.5714 | 0.5714 | 0.0348 | 0.7558
0.7443 | 0.1428 | 0.0406 | 0.8270
0.2000 0.2000 0.4156 0.4472 0.7443 | 0.2857 | 0.0264 | 0.8373
0.4000 0.2000 0.4890 0.6018 0.7143 | 0.4286 | 0.0198 | 0.8416
0.4000 0.4000 0.1191 0.6310 0.7143 | 0.5714 | 0.0156 | 0.8439
0.6000 0.2000 0.0706 0.7531 0.7143 | 0.7143 | 0.0123 | 0.8453
0.6000 0.4000 0.0445 0.7686
0.6000 0.6000 0.0315 0.7747 0.12 0.12 0.7727 | 0.3464
{.8000 0.2000 0.0155 0.8876 0.24 0.12 0.4796 | 0.4534
0.8000 0.4000 0.0097 0.8919 0.24 0.24 0.3473 | 0.4899
0.8000 0.6000 0.0069 0.8936 0.36 0.12 0.2976 | 0.5418
0.8000 0.8000 0.0049 0.8945 0.36 0.24 0.1970 | 0.5818
0.36 0.36 0.1498 | 0.6000
(.1667 0.1667 0.5285 0.4083 0.48 0.12 0.1781 | 0.6396
0.3333 0.4667 0.2745 0.5408 0.48 0.24 0.1179 | 0.6707
0.3333 0.3333 0.1765 0.5773 0.48 0.36 (0.0896 | 0.6848
90,5000 0.1667 0.1328 0.6720 0.48 0.48 -0.0720 | 0.6920
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Detailed calculations using this formula have been
made in [3].

Taking into account (2.7) and (1.13), which may be
reduced to

6 — k(T )‘/z(l—'rl )B 6o — H (12_>1/2<1‘“72 )B
1—'—5(?3— T—w/ ' 7 7§ \w T—1 ) °

we may transform (2.5) and (2.6) to the following for-
mulas which are convenient for making calculations:

b= () ) s (B

(1—-rg>ﬁ3 <v hzi—gz(fg)),

1 —13 QI(TI)
{1 713\t —12\B
o= (2 (=) +

=3

[o0]
4B (E e ()" 2 ()
7 (1:3) — 4n? —1 z,(13) °

o (w) = () (7 =w) +
+ %({%yhg—“nzu —_—ZZZ((:)) - (2.8)

In particular, for an incompressible fluid

1,2, (1) T \*

lim T (_)
rif?—l»o zn('rj) T,

and series (2.8) may be summed easily. As a result
of summing the series in (2.8) we can obtain without

difficulty
b= (B s (B

== () (1 2o (3

G, 71=1,273)

<2+ 2o+ BanZ T, eo

Calculations using (2.8) and (2.9) were carried out
with an accuracy to four decimal places. The results
of the calculations are given, respectively, in Tables 1
and 2. At the same time the ratios 7,/73 and 7,/7; for
an incompressible fluid were calculated tor the same
values of 74, 73, and 73 as in the case of a compressible
fluid. In making these calculations the values of the
functions z,(7) and z,'(7) were taken from the tables of
[3], and the results of the calculations of paper [5]
were employed.
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